Suppression of Gate Induced Drain Leakage Current (gidl) by Gate Workfunction Engineering: Analysis and Model

نویسنده

  • Farkhanda Ana
چکیده

Leakage current reduction is of primary importance as the technology scaling trends continue towards deep sub-micrometer regime. One of the leakage mechanisms which contribute significantly to power dissipation is the Gate Induced Drain Leakage (GIDL). GIDL sets an upper limit on the VLSI MOSFET scaling and may even lead to device breakdown. Thus, in order to improve performance, static power consumption becomes a major concern in such miniaturized devices. With the CMOS technology in the nanometer regime, metal gates emerge as a powerful booster over the poly-Si gates, keeping the leakage mechanisms in control. This work presents a systematic study of the Gate Induced Drain Leakage current reduction by changing the gate workfunction. In this work, an attempt has been made to model the metal gates in the field equations in the gate-drain overlap region. The modeling has been accomplished by taking the physical property of the metals into account i.e. the workfunction. The analytical model has been used to study the impact of gate workfunction engineering on GIDL. The model includes the calculation of band bending, the resultant electric field in the gate-drain overlap region and the GIDL current. It has been observed that the electric field and the GIDL current decreases as the gate workfunction is increased continuously from 4.0~5.2 eV. Further, the results are more interesting at low applied voltages where the decrease in the current is of about 6 orders of magnitude as compared to that at higher voltages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics

In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...

متن کامل

Junction Depth Dependence of the Gate Induced Drain Leakage in Shallow Junction Source/Drain-Extension Nano-CMOS

This study describes the dependence of the surface electric field to the junction depth of source/drain-extension, and the suppression of gate induced drain leakage (GIDL) in fully depleted shallow junction gate-overlapped source/drain-extension (SDE). The GIDL can be reduced by reducing shallow junction depth of drain-extension. Total space charges are a function of junction depth in fully dep...

متن کامل

GIDL Suppression by Optimization of Junction Profiles in 22nm DGSOI nFETs

It is shown by TCAD simulations how the gate-induced drain leakage which dominates the OFF-current in 22nm double-gate SOI nFETs with high-K gate stacks, can be minimized by proper variations of the junction profiles. Based on a microscopic, non-local model of band-to-band tunneling, transfer characteristics are computed after systematic changes in source/drain doping, body thickness, and HfO2 ...

متن کامل

A Novel Hybrid Nano Scale MOSFET Structure for Low Leak Application

In this paper, novel hybrid MOSFET(HMOS) structure has been proposed to reduce the gate leakage current drastically. This novel hybrid MOSFET (HMOS) uses source/drain-to-gate non-overlap region in combination with high-K layer/interfacial oxide as gate stack. The extended S/D in the non-overlap region is induced by fringing gate electric field through the high-k dielectric spacer. The gate leak...

متن کامل

Contribution of Gate Induced Drain Leakage to Overall Leakage and Yield Loss in Digital submicron VLSI Circuits

In this paper, the impact of gate induced drain leakage (GIDL) on overall leakage of submicron VLSI circuits is studied. GIDL constitutes a serious constraint, with regards to off-state current, in scaled down CMOS devices for DRAM and/or EEPROM applications. Our research shows that the GIDL current is also a serious problem in scaled CMOS digital VLSI circuits. We present the experimental and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012